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Bienzymatic synthesis of chiral heteroaryl-methyl-sulfoxides
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Abstract—Several chiral heteroaryl-methyl-sulfoxides were prepared from the corresponding sulfides by an oxidation process catal-
ysed by an oxidase/peroxidase bienzymatic system.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Chiral sulfoxides have been extensively used as auxilia-
ries in asymmetric synthesis.1–4 Their preparation is well
documented, by either chemical,5–8 microbiological9–11

or enzymatic methods.12–17 Heteroaryl-alkyl-sulfoxides
can offer an advantage over dialkyl-sulfoxides or alkyl-
aryl-sulfoxides by having an additional chelating centre
of potential interest in asymmetric catalysis.

We previously reported the enantioselective preparation
of various aryl-methyl-sulfoxides by bienzymatic meth-
ods making use of an oxidase producing hydrogen per-
oxide, immediately consumed by a peroxidase from
Coprinus cinereus to oxidise a sulfide (Scheme 1).18,19

The two main advantages of the process, when com-
pared to the direct addition of hydrogen peroxide into
the reaction medium are
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Scheme 1. Bienzymatic catalysed synthesis of (S)-aryl-methyl-
sulfoxides.
• An increased operational stability of the peroxidase,
known to be inactivated by hydrogen peroxide acting
as a �suicide substrate�.20

• An increased enantiomeric excess obtained on the
products, since non-enzymatic spontaneous oxidation
of the sulfide is avoided.
2. Results and discussion

We herein report the preparation of several chiral het-
eroaryl-methyl-sulfoxides by a similar method, in which
hydrogen peroxide is produced by glucose oxidase act-
ing on glucose, and immediately used by the peroxidase
for an asymmetric oxidation of the sulfide.28 Some sul-
fides derived from electron-deficient heterocycles were
completely unreactive (Scheme 2).

Conversely, sulfides bearing electron-rich heterocycles
(Scheme 3) were readily oxidised, giving the sulfoxides
as sole products, with good enantiomeric excess
(Table 1).

2-Methylthiopyridine and 3-methylthiopyridine (in con-
trast to 4-methylthiopyridine, which was not oxidised)
had an intermediate behaviour: the corresponding sulf-
oxides were obtained more slowly, and with lower ees
(entries 3 and 4).

No sulfone or side-products were detected. Interestingly,
the bis-sulfide 7a (entry 7) was only mono-oxidised,
while the chemical oxidation by one molar equivalent
of sodium periodate always gave a mixture of mono-
and di-oxidised products (Scheme 4).
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Scheme 3. Heteroaryl-methyl-sulfides oxidised by the bienzymatic oxidase/peroxidase system.
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Scheme 2. Heteroaryl-methyl-sulfides insensitive to oxidation by the oxidase/peroxidase system.

S
S S

S
S S+

O-

S
S+ S+

O--O

S
S S+

O-

+

Oxidase/Peroxidase

NaIO
4

(1 molar eq.)

Scheme 4. Chemical and bienzymatic sulfoxidation of 2,5-bis-methyl-
sulfanyl-thiophene.

Table 1. Oxidation of sulfides 1–7a into the corresponding sulfoxides
1–7b catalysed by the bienzymatic oxidase/peroxidase system

Entry Sulfide % Conversion
(20 h reaction)

ee (configuration)a Ref.

1 1a 100 93 (�)-(S) 24
2 2a 100 85 (�)-(S) 22
3 3a 60 50 (�)-(S) 24
4 4a 40 41 (�)-(S) 27
5 5a 90 >99 (�)-(S) —
6 6a 100 >99 (�)-(S) —
7 7a 70 75 (�)-(S) —

aDeduced from the sign of the specific rotation.
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Some of these chiral sulfoxides (R)- or (S)-1b,21–24 2b,22

3b22,24–26 and 4b27 have been previously described. These
were individually prepared by the oxidation of the cor-
responding sulfide chemically,26,27 with whole cells of
microorganisms (fungi or bacteria)21,22,24 or enzymati-
cally (with chloroperoxidase23,25 or cyclohexanone
monooxygenase25). Compounds 5b–7b have not been
previously prepared, even as racemates.28,29 Assuming
the same enantioselectivity of the peroxidase for all the
heteroaryl-methyl-sulfides, we propose an (S)-configura-
tion for these new chiral sulfoxides.
3. Conclusion

Enantioselective oxidation of heteroaryl-methyl-sulfides
was realised using cheap industrial enzymes, available in
large quantities from Novozymes, which make these
syntheses easily possible on a large (several grams) scale.
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